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Abstract In this paper, we investigate the influence of geometric nonlinearity on the propagation of longitu-
dinal and shear waves in a gradient-elastic medium. It is shown that taking into account surface energy we
observe the destruction of travelling plane longitudinal and shear waves.
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1 Introduction

Along with the model of the classical continuum, the models of generalized continua are widely used in the
mechanics of a deformable solids, see [1–11] and the references therein. An important class of the generalized
continua is a gradient-elasticmedium. The appearance of thismodel dates back to the beginning of the twentieth
century and is associated with the names of Le Roux [12,13] and Jaramillo [14]. It is worth to note that the
famous Cosserat continuum model [15] with constraint rotations, that is when the rotation vector depends
on the displacement curl [16], can be also treated as a gradient-elastic medium. The most general model
of a gradient-elastic medium is considered by Mindlin [17]. However, its practical use is hampered by the
introduction in this theory of a large number of elastic moduli that require experimental determination. In the
works by Vardoulakis and his colleagues [18–21], a modified version of Mindlin’s theory was proposed, which
leads to significant simplification of this mathematical model while its basic properties are retaining.

Some gradient models allow us to take into account the surface energy [22–30], the same relates the models
proposed in [18–21], i.e., the excess energy of the surface layer at the surface/interface, due to the difference
in intermolecular interaction in both phases. If the surface is free, then the role of the second phase is played
by a vacuum.

Mathematical models of structured media with surface energy may be useful in studying the acoustic
properties of materials and structural elements in which new surface areas have been formed during the
development of cracks or the surface has contracted during adhesion of various bodies. These processes lead to
a change in themutual arrangement of atoms, which leads to a change in the surface energy and the stress-strain
state.
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2 Mathematical model

For linear elastic materials, the Mindlin theory [17] provides a general basis for developing gradient theories
of deformations. Therefore, in this section, we first briefly recall the basic equations of this theory and then
give them a modified version according to the approach developed by Vardoulakis and his colleagues [18–21].
The idea of an elementary cell (microenvironment) is introduced into the theory by Mindlin, which can be
interpreted as a periodic structure of the crystal lattice, polymer molecules, polycrystal crystallites or grains of
granularmaterial. Then, the corresponding kinematic variables are determined to describe geometric changes in
both macro- and microenvironment. Then, relative to the Cartesian coordinate system Ox1x2x3, the following
dependence is taken for the density of potential energy (potential energy per unit of macro-volume):

W = W
(
εqr , γqr , χqrs

)
(1)

where εqr = ∂rUq + ∂qUr is the strain tensor,Uq are the components of displacement vector, ∂r ≡ ∂/∂xr , the
indices (q, r, s) are in the range (1; 2; 3), γqr = ∂qUr − ψqr is the relative strain with ψqr denoting the micro
deformation (i.e., the displacement-gradient in themicro-medium), andχqrs ≡ ∂qψrs is themicro-deformation
gradient. Then, appropriate definitions for the stresses follow from the analysis of the first variation of W :

τqr ≡ ∂W

∂εqr
, αqr ≡ ∂W

∂γqr
, μqrs ≡ ∂W

∂χqrs
(2)

where
(
τqr , αqr , μqrs

)
are the Cauchy stress (symmetric), relative stress (asymmetric), and double stress

tensors, respectively.
In what follows, from the variational equation of motion considering independent variations δUq and δψqr

and assuming that the micro-medium cell is a cube with edges of length 2h, one may obtain the following
twelve stress scalar equations of motion [17]:

∂qσqr + fr = ρ′(∂t tUr ), (3)

∂qμqrs + αrs + �rs = 1

3
ρh2 (∂t tψrs) , (4)

and the twelve traction boundary conditions

tr = nqσqr , Trs = nqμqrs, (5)

where ρ′ ≡ ρM +ρ, ρM , is themass of macro-material per unit macro-volume, ρ is the mass of micro-material
per unit macro-volume, σqr ≡ τqr + αqr is the total stress tensor, nq are the components of the unit vector of
outer normal to the boundary, fr is the body force per unit volume and tr is the surface force per unit area,
�rs is the double force per unit volume, see e.g., Love [31] for an interpretation of this force system, and Trs
is the double force per unit area, and ∂t denotes time differentiation.

However, we should mention that the above formulation involves, in its general form, a very large number
of elastic moduli and, therefore, applying it to practical situations may be extremely difficult, see for example,
[27]. The particular form proposed in [18–21] can be considered as one of the simplest versions of Mindlin’s
elasticity theory with microstructure.

More specifically, Vardoulakis and co-workers suggested the following form for the strain-energy density
function [18–21]:

W = 1

2
λεqqεrr + μεqrεrq + μc

(
∂mεqr

) (
∂mεrq

) + μbm∂m
(
εqrεrq

)
, (6)

where λ and μ are classic Lame moduli, c, b are additional elastic moduli which characterize a gradient
medium,bm = bϑm ,ϑmϑm = 1, ∂m means differentiationwith respect to the coordinate xm , εqr are components
of the strain tensor, indices q, r,m are taken from the range 1, 3.

The last term on the right-hand side of (6) refers to the surface energy, since by the Gauss–Ostrogradsky
theorem it can be written in the form
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∫

Ω

∂m
(
bmεqrεrq

)
dΩ = b

∫

S

(
εqrεrq

)
(ϑmnm) dS,

where S is the boundary of the volume Ω .
The positive definiteness of (1) requires the following restrictions on material moduli:

3λ + 2μ > 0, μ > 0, c > 0, −1 < b/c1/2 < 1.

Modulus c depends on a size on the structural elements and equals to c = (h/4)2, whereas modulus b can
be defined as the material length-scale parameter related to surface energy.

With the help of (2) and (6), we can express stresses and double stresses through the components of the
strain tensor as follows:

τqr = λδqrεmm + 2μεqr + 2μbm
(
∂mεqr

)
,

μmqr = 2μ
[
bmεqr + cεqr,m + (

bmεqn + cεqn,m
)
Ur,n

]
. (7)

Within the variational approach, considering δUq as an independent variation we obtain the equations of
motion and natural boundary conditions in the stresses in the case of a regular boundary:

∂qσqr = ρ
∂2Ur

∂t2
,

∂qμmqr + αrm = I
∂2ψrm

∂t2
,

nrτrm − nqnrnm∂mμqrm − 2nr
(
δql − nqnl

)
∂lμqrm + (

nqnrnl
(
δlq − nln j

)
∂ j − nq (δrl − nll) l

)
μqrm

+ 1

3
ρh2nr

∂2ψrm

∂t2
= Pm,

nqnrμqrm = Rm, (8)

where δqr is the Kronecker symbol, Pm is a surface force vector per unit area, Rm is a double surface force
without moment per unit area.

If we take into account the geometric nonlinearity in (1), i.e., if we introduce into consideration the tensor
of finite deformations εqr = ∂rUq + ∂qUr + ∂rUm∂qUm, the form of Eq. (8) will not change.

Taking into account relations (7) and (8), we obtain the equation of motion in displacements:

ρ
∂2U
∂t2

= 1

3
ρh2�

∂2U
∂t2

+ (λ + μ − μc�) grad divU + μ�U − μc�2U + f . (9)

The vector f contains nonlinear terms due to relation for strain tensor, the explicit form of which will be given
below for those particular cases that will be considered.

3 Dispersion of longitudinal and shear waves

If in the expression for strain tensor we neglect nonlinear terms (small strain tensor), then f = 0 and the
dynamics of the medium corresponding to (6) will be described by the vector equation in terms of displace-
ments:

ρ
∂2U
∂t2

= 1

3
ρh2�

∂2U
∂t2

+ (λ + μ − μ�) grad divU + μ�U − μc�2U. (10)

Let us consider plane longitudinal waves propagating in unbounded space along the direction of the x1 axis.
The equation which describes these waves follows from Eq. (10) with the substitution U = (U1 (x1, t) , 0, 0) .
As a result, we get the following equation:

(λ + μ)
∂2U1

∂x21
− 2μc

∂4U1

∂x41
+ 1

3
ρh2

∂4U1

∂x21∂t
2

− ρ
∂2U1

∂t2
= 0. (11)
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We are looking for the solution to Eq. (11) in the form of a travelling harmonic wave:

U1 = Aei(kx1−ωt) + c.c., (12)

where k is a wave number, ω is a frequency and c.c. means complex conjugated value. After substitution
expression (12) into (11), we get the dispersion equation:

(λ + μ) k2 − 2μck4 + (
I k2 − ρ

)
ω2 = 0, (13)

from which we find an explicit dependence of the frequency on the wave number:

ω = k

√
c2l + 2cc2τ k2

1 + h2k2/3
, cl =

√
λ + 2μ

ρ
, cτ =

√
μ

ρ
, (14)

where cl and cτ are velocities of longitudinal and shear waves in the absence of a microstructure.
Let us denote the phase velocity asC with upper index stand for the type of a wave (l is for longitudinal one,

τ is for shear wave). We introduce the dimensionless frequency, wave number and phase velocity as follows

kd = k
√
c, ωd = ω

h√
3cτ

,Cd = kd
ωd

(15)

which we further use in the study of various types of waves.
In dimensionless values, the phase velocity of the longitudinal wave is given by:

Cl
d =

√
(cl/cτ )

2 + 2k2d
3/16 + k2d

.

At small values of the wave number, i.e., when the size of the microelement does not affect the wave
process, there is no dispersion. In this case, the phase velocity Cl coincides with the velocity of a longitudinal
wave in a classical elastic medium. When ω → ∞ dispersion is also absent and the asymptotic value of the
phase velocity of the longitudinal wave is given by

Cl =
√
3

2
√
2
cτ , Cl

d = √
2.

It is worth to note that the Cosserat medium model does not describe the dispersion of a longitudinal wave
at all, and the Le Roux medium model, which describes a dispersion, leads to the infinite growth of phase
velocity at ω → ∞ [16].

The equation describing the propagation of a plane shear wave can be obtained from (11) with the substi-
tution U = (0,U2 (x1, t) , 0) . It reads

μ
∂2U2

∂x21
− μc

∂4U2

∂x41
+ 1

3
ρh2

∂4U2

∂x21∂t
2

− ρ
∂2U2

∂t2
= 0. (16)

Similarly, as for the longitudinal wave, we find the dispersion relation which takes the form

ω = kcτ

√
1 + ck2

1 + h2k2/3
. (17)

The phase velocity of the shear wave, dimensionless with the help of (12), is given now as follows:

Cl
d =

√
(cl/cτ )

2 + 2k2d
3/16 + k2d

.

The coincidence of the dispersion relations, built according to the above formulas and the classical theory
of elasticity, is observed for small values of k andω. In this case, the dispersion is absent and the phase velocity
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Fig. 1 Dispersion relations for the longitudinal (1) and shear (2) waves propagating in a gradient-elastic medium

Cτ = cτ . With the increase in frequency the phase velocity decreases and at the limit ω → ∞, it takes the
following value:

Cτ =
√
3

4
cτ , Cτ

d = 1.

In Fig. 1 for themediumwith parameter r = λ
μ

= 3 are shown the dependences of the normalized frequency
on the normalized wave number of the longitudinal (curve 1) and shear (curve 2) waves and their asymptotes
(dashed straight lines).

The dispersion equation for a longitudinal wave in dimensionless quantities contains only one parameter
r, which is necessary for solving this equation. The form of the dispersion curve for different values of r does
not change; however, with the increase in the parameter r, the ratio of the phase velocities of the longitudinal
and transverse waves increases.

Note that in (10) there are no terms with the parameter b. The velocities of longitudinal and shear waves
also do not depend on this parameter, i.e., the additional term in the potential energy density expression, which
is responsible for the surface energy, does not affect the propagation of linear bulk waves in the studied model
of the medium.

4 Nonlinear longitudinal wave

In the nonlinear formulation (2) and (6), we consider the problem of the propagation of plane longitudinal and
shear waves. First, longitudinal wave motions are investigated, in which the particles of the medium move in
the direction of motion. Let us use the direction of motion the axis x1. The displacement vector will have the
form U = (U1 (x1, t) , 0, 0).

Nonlinear longitudinal motions can be described with the help of the following equation:

(λ + 2μ)
∂2U1

∂x21
− 2μc

∂4U1

∂x41
+ 1

3
ρh2

∂4U1

∂x21∂t
2

− ρ
∂2U1

∂t2

= − λ + 2μ

2

∂

∂x1

(
∂U1

∂x1

)2

+ 2μc
∂3

∂x31

(
∂U1

∂x1

)2

+ 2μb1
∂2

∂x21

(
∂U1

∂x1

)2

. (18)

The propagation of plane longitudinal waves described by this equation will be affected by two factors:
dispersion and nonlinearity. Nonlinearity leads to the emergence in the wave of new harmonics, into which
the energy from the main disturbance is continuously pumped. This contributes to the appearance of sudden
changes in the propagating wave profile. On the contrary, the dispersion makes the profile smoother due to the
difference in the phase velocities of the harmonic components of the wave. The combined effect of these two
factors, their so-called “competition,” can lead to the formation of travelling waves. Such waves propagate at
a constant speed without changing of their shape.

We seek solutions to this equation in the class of stationary deformation waves ε (ξ) = ∂U1
∂ξ

, where
ξ = x − V t is the travelling coordinate, V = const is velocity of travelling wave, which is a priori unknown.
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Then (5) reduces to a nonlinear ordinary differential equation that is insoluble relative to the highest
derivative

h2

3

(
V 2 − 3

8
C2

τ

)
d2ε

∂ξ2
+ (

C2
l − V 2) ε = −C2

l ε
2 + 2C2

τ b1
d

(
ε2

)

dξ
+ C2

τ h
2

8

d2
(
ε2

)

dξ2
, (19)

Let us carry out a qualitative analysis of the behaviour of solutions of this equation on the phase plane(
ε, dε

dξ

)
. We assume at the first stage that the surface energy is negligible, i.e., the parameter responsible for the

surface energy is zero. Depending on the ratio of the speed of a nonlinear wave V and velocities of longitudinal
and shear waves Cl and Cτ the behaviour of solutions will be qualitatively different. The phase portraits of
Eq. (16) are shown in Fig. 2.

The approaches for constructing and analysing phase portraits of nonlinear dynamic systems described by
ordinary second-order differential equations can be found, for example, in [32].

When V <
√
3/8Cτ closed phase trajectories are absent; there are no bounded solutions of (19) (Fig. 2a).

In case when
√
3/8Cτ < V < Cl , there are closed phase trajectories (Fig. 2b). At the origin, there is a

singular point of the “centre” type, to the left, where there is a singular point of the “saddle” type. Straight line

ε = 4

3

V 2

C2
τ

− 1

2
, (20)

relates to the region of forbidden motions along the phase trajectories. Equation (16) has bounded periodic
solutions. Thus, in this case there exist periodic nonlinear travelling waves.

When V > Cl there are closed phase trajectories (Fig. 2c). At the origin, there is a singular point of the
“saddle” type, to the right of which there is a singular point of the “centre” type. The straight line given by
relation (20) is still is the boundary of the region of forbidden motions. In this case, it is possible to have a
solitary nonlinear travelling wave, which is a soliton of deformation of positive polarity. Soliton of amplitude
A, of width Δ and of velocity V which relate by the following formulae:

A ∼ 3h2
(
8C2

l − 3C2
τ

)

C2
l

(
8h2 − 6Δ2

) , Δ2 ∼ 4h2
(
V 2 − 3/8C2

τ

)

3
(
V 2 − C2

l

) . (21)

From (21), we establish that the soliton amplitude is determined by its velocity for fixed λ,μ, ρ. In its turn,
the velocity of a solitary wave depends on Δ and h. Figure 3a shows the dependence of the amplitude on the
width of the soliton at a fixed cell size. The dependence of the width of the localized motion on its velocity
and cell size is shown in Fig. 3b.

The behaviour of a soliton is classical, since a wave of greater amplitude has a smaller width and propagates
with higher velocity. Minimum value Δ = 2h/

√
3 is achieved with an infinite growth of the soliton velocity.

From the last relation in (21), we can note a linear dependence of the soliton width on h. When the velocity
of a solitary wave tends to the velocity of a longitudinal wave without taking into account the microstructure,
the soliton amplitude tends to zero, whereas its width tends to infinity.

The account of terms with coefficient b1 introduces non-conservatism into the system. Special points of the
“centre” type are transformed into “focuses,” and, the larger the coefficient responsible for the surface energy,
the faster the phase trajectories fall into a singular point. Separatrices of “saddles” also change, and this leads
to the destruction of solitons. We can say that if the coefficient b1 = 0 and the surface energy does not affect
the medium, then travelling strain waves are possible. Otherwise, they are not possible.

5 Nonlinear shear wave

Finally, let us consider the effect of geometric nonlinearity on transverse motion. The displacement vector for
vertically polarized motions has the form U = (0,U2 (x1, t) , 0). Nonlinear plane transverse motions will be
described by the following equation:

μ
∂2U2

∂x21
− μc

∂4U2

∂x41
+ 1

3
ρh2

∂4U2

∂x21∂t
2

− ρ
∂2U2

∂t2
= 2μc

3

∂3

∂x31

(
∂U1

∂x1

)3

+ μb1
∂2

∂x21

(
∂U1

∂x1

)3

, (22)
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Fig. 2 a Phase portrait
(
ε, dε

dξ

)
, V <

√
3/8Cτ . b Phase portrait

(
ε, dε

dξ

)
,
√
3/8Cτ < V < Cl (V = Cτ ). c Phase portrait

(
ε, dε

dξ

)
,

V > Cl (V = 2Cτ )

Travelling shear waves E (ξ) = ∂U2
∂ξ

will be described by an ordinary differential equation that cannot be
solved with respect to the highest derivative:

h2
(

V 2

3C2
τ

− 1

16

)
d2E

∂ξ2
+

(
1 − V 2

C2
τ

)
E = b1

d
(
E2

)

dξ
+ h2

24

d2
(
E3

)

dξ2
. (23)

Depending on the relationship V/Cτ , the behaviour of the solutions of this equation on the phase plane(
E, dE

dξ

)
, will be qualitatively different. Bounded solutions (when b1 = 0) are possible only in the case when√

3Cτ /4 < V < Cτ . The corresponding phase portrait is shown in Fig. 4.
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Fig. 3 a Dependence A (Δ) , Δ1 = 2h/
√
3. b Dependence Δ (V, h)

Fig. 4 Phase portrait
(
E, dE

dξ

)
,
√
3Cτ /4 < V < Cτ

Straight lines E = ±
√

1
2

(
16
3

V 2

C2
τ

− 1
)
represent the boundaries of areas of forbidden motions on the phase

plane. Travelling waves of shear deformation can be only periodic. There are no solitons of shear deformations.
The presence of b1 leads to the transformation of a singular point of the “centre” type into a singular point

of the “focus” type, which leads to the destruction of the wave. So in a gradient-elastic medium with a surface
energy in the case b1 �= 0, there are no stationary waves.

6 Conclusions

During last two decades, many facts of nonlinear behaviour of rocks have been experimentally discovered
[31,32] using seismic techniques. Among such facts there are wave front reversal [33], seismic emission [31],
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amplitude-dependent attenuation [34], a decrease in the wave propagation velocity and an increase in their
amplitude (the so-called “bright spot” phenomenon) [35].

To explain the above and other observed phenomena, linear elasticity-based mathematical are not enough
models for proper description of wave processes in rocks. At the same time, mathematical models require
generalization both for the case of taking into account nonlinearities (geometric, physical, cavity, contact-
type) and for taking into account the dissipative–dispersive properties of materials.

In a number of works [18,27,36–38], the efficiency of the models of gradient elasticity for describing
dynamic processes in soils and rocks has been shown. In the present work, a nonlinear gradient-elastic model
of a solid body was used to describe intense longitudinal and shear waves of a stationary profile. The influence
of surface energy on the stability of such waves was discussed. It is shown that the propagation of longitudinal
and shear waves described by the equations of the gradient theory of elasticity will be affected by two factors:
dispersion and nonlinearity. When they interact, travelling waves can be formed that propagate at a constant
speed and do not change their profile. Accounting for surface energy leads to the destruction of travelling
waves.
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